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Arthropods in Relation to Plant Disease
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Viral diseases can change plant metabolism, with potential impacts on the quality of the plant’s food supply 
for insect pests, including virus vectors. The banana aphid, Pentalonia nigronervosa Coquerel, is the vector 
of the Banana bunchy top virus (BBTV), the causal agent of Banana bunchy top disease (BBTD), the most 
devastating viral disease of bananas in the world. The effect of BBTV on the life-history traits and pop-
ulation dynamics of P. nigronervosa remains poorly understood. We therefore studied the survival rate, 
longevity, daily fecundity per aphid, tibia length, population growth, and winged morph production of 
a P. nigronervosa clone grown on healthy or infected, dessert, or plantain banana plants. We found that 
daily fecundity was higher on infected banana than on healthy banana plants (plantain and dessert), and 
on plantain than on dessert banana plants (healthy and infected). Survival and longevity were lower on 
infected dessert bananas than on other types of bananas. In addition, virus infection resulted in a decrease 
in aphid hind tibia length on both plant genotypes. The survival and fecundity table revealed that the aphid 
net reproduction rate (Ro) was highest on plantains (especially infected plantain), and the intrinsic growth 
rate (r) was highest on infected plants. Finally, the increase of aphids and alate production was faster first 
on infected plantain, then on healthy plantain, and lower on dessert banana (infected and uninfected). Our 
results reinforce the idea of indirect and plant genotype-dependent manipulation of P. nigronervosa by the 
BBTV.
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Introduction

When a plant is infected by a virus, its defense capacities, the 
expressions of some proteins such as heat shock proteins and the 
production of phytohormones are modified (Whitham et al. 2006, 

Shi et al. 2021). The viral infection also changes the nutritional 
quality of the plant and its attractiveness for insects, including those 
vectors of viruses (Schoelz and Stewart 2018, Safari Murhububa 
et al. 2021). The banana aphid, Pentalonia nigronervosa Coquerel 
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(Hemiptera: Aphididae), is the vector of the Banana bunchy top 
virus (BBTV), the causal agent of banana bunchy top disease, which 
is currently the most serious viral infection of banana plants world-
wide (Thomas and Iskra-Caruana 2000, Chandrassekar et al. 2011, 
Qazi 2016). The disease is characterized by dwarfed and narrow 
leaves, chlorosis of leaf margins, and dark-green discontinuous 
streaks on leaves, petioles, and pseudostem. The leaves of infected 
plants become progressively smaller and stand upright, giving the 
plant a bunchy appearance, which has potential deleterious effects 
on banana yield (Gatsinzi 1987). The BBTV is currently reported in 
Africa, Asia, and Australia, while the vector is present in all banana-
growing regions, even where BBTV is not yet reported (CABI 2022a, 
2022b). This virus belongs to the family Nanoviridae and the genus 
Babuvirus, with a capsid possessing multicomponent circular single-
stranded DNA genomes encapsulated in small (18–20 nm) isometric 
particles (Burns et al. 1995, Timchenko and Bernadi 2007, Stainton 
et al. 2015, Mukwa et al. 2016, Guyot et al. 2022).

The BBTV is restricted to phloem tissues, and the cells sur-
rounding the phloem contain an abnormal number of chloroplasts, 
giving rise to the macroscopic symptoms of dark-green streaks. After 
infection, the BBTV replicates and progressively accumulates in all 
parts of the plant, except in leaves formed before infection where 
the virus is present but does not replicate. The vector is unable 
to acquire the virus from these leaves (Hafner et al. 1995, Iskra-
Caruana 2003). The BBTV is transmitted by the aphid in a persistent 
and nonpropagative way to a healthy banana plant after acquisi-
tion from an infected host plant (Iskra-Caruana 2003, Anhalt and 
Almeida 2008). As persistent virus, acquisition of BBTV requires 
prolonged feeding for at least a few hours on an infected plant. 
Virions must pass through the insect gut to survive in the hemo-
lymph to pass to salivary tissues (hence “circulatory transmission”), 
without replicating in the banana aphid (hence “nonpropagative”) 
(Wang and Ghabrial 2002, Ng and Falk 2006, Hogenhout et al. 
2008, Bragard et al. 2013, Gray et al. 2014, Pinheiro et al. 2015).

The BBTV manipulates banana plants to produce a specific set 
of volatile organic compounds (VOC) attractive to P. nigronervosa 
(Safari Murhububa et al. 2021). This is consistent with the “Vector 
Manipulation Hypothesis—VMH” (Holmes and Bethel 1972, Poulin 
1994, Ingwell et al. 2012), very relevant to aphids, predicting that 
a virus will promote its spread from plant to plant by influencing 
the selection behavior of the vector and by enhancing its repro-
ductive performances, thereby promoting the epidemiology of the 
virus (Gildow 1980, Blua and Perring 1992, Eigenbrode et al. 2018). 
Most reports indicate that virus-infected plants are higher-quality 
hosts for the vectors compared with virus-free plants as they pro-
mote their fecundity, survival, and longevity (Eigenbrode et al. 2002, 
2018, Colvin et al. 2006, Ingwell et al. 2012). This is the case in 
the study by Bosque-Pérez and Eigenbrode (2011) where 2 aphids, 
Rhopalosiphum padi transmitting Barley yellow dwarf virus-BYDV 
to wheat and Myzus persicae transmitting Potato leafroll virus-PLRV 
to potato, had improved life histories (growth rates and reproductive 
capacities) on infected plants.

The effect of a virus on the phenotypic traits of the vector may 
also vary according to genotypic or varietal characteristics of the 
host plant, for example its palatability for the vector, especially for 
persistent viruses. Chesnais et al. (2019) suggested that this is re-
lated to plant tolerance or host-plant genotype. In this study, the au-
thor observed that the aphid My. persicae prefers to settle, feed, and 
produce more offspring on the wild camelina genotype (Camelina 
microcarpa) infected but tolerant to Turnip yellows virus (TuYV), 
than on the cultivated genotype (C. sativa) and their F1 hybrid, 
thus leading to an increased number of viruliferous aphids. Because 

of the long feeding time required for the acquisition of persistent 
viruses, most of them improve the quality of the host plant for the 
vectors, and thus the life-history traits of the vectors (Mauck et al. 
2012), as well as the growth rate, dispersal, and host-plant selec-
tion capacities of the vector. In contrast, in nonpersistent trans-
mission viruses, infection often significantly reduces the quality 
of plants for aphid vectors, and in part due to significant changes 
in the carbohydrate/amino acid ratio in the phloem, which causes 
rapid dispersal of aphids from infected to healthy plants (Mauck 
et al. 2010, 2014).

In the present study, we investigated the effect of BBTV infec-
tion on life-history traits, population dynamics, and production of 
alates (winged individuals) of P. nigronervosa reared on infected 
and uninfected, dessert (Cavendish dessert banana [AAA genome]), 
and plantain banana plants (Pacific plantain [AAB genome]). The 
key question was whether BBTV could alter the quality of banana 
plants and make them more suitable hosts for P. nigronervosa, in 
terms of improved performance (fecundity, survival, longevity, and 
population growth). We hypothesize that the vector P. nigronervosa 
grows better and reproduces faster on infected banana plants than 
on healthy banana plants, and on plantain banana plants than on 
dessert banana plants.

Materials and Methods

Insects and Plants
Pentalonia nigronervosa reproduces exclusively asexually in tropical 
and subtropical regions (Foottit et al. 2010, Watanabe et al. 2013). 
However, this type of clonal reproduction does not exclude the exist-
ence of a strong phenotypic variation between clones but also within 
the same clone (Loxdale 2008, Foottit et al. 2010). As our objec-
tive was to compare the effect of the viral infection and the banana 
genotype on the growth potential of the aphid, we took the option 
of working on a single clone to control for any genotypic effect of 
the clone, as in the work of Robson et al. (2007) who used a single 
aphid clone for the analysis of the effects of rearing temperature. 
The starting colony of P. nigronervosa was therefore obtained from 
a parthenogenetic female taken from a healthy banana plant in the 
province of South Kivu (Democratic Republic of Congo), then raised 
continuously in plastic pots (red thermoformed pot MCI 17:2L) on 
a potting soil substrate. The aphids were kept in cages (200 × 100 × 
100 cm) of small-mesh netting, on banana plants placed in growth 
chambers at 25 ± 2 °C, a relative humidity of 30 ± 5%, a relative 
humidity of 30 ± 5%, and a 12:12h (dark:light) photoperiod. All 
aphids used in this study were apterous.

The plant material consisted of dessert banana plants of the 
cultivar Cavendish (strict triploid Musa acuminata—AAA) and 
plantains of the cultivar Pacific (hybrids and triploids Musa 
paradisiaca—AAB), which were either symptomatic (with symptoms 
of BBTV) or asymptomatic (without symptoms of the disease). Four 
banana plant treatments were applied and used for both the life-
history trait and for the aphid population development experiments: 
healthy dessert banana (HDB), healthy plantain banana (HPB), 
infected dessert banana (IDB), and infected plantain banana (IPB). 
Plants were identified and collected in subsistence farmer plantations 
in South Kivu in the Democratic Republic of the Congo (Dowiya 
et al. 2009), before being transported to Belgium (Earth and Life 
Institute, Univeristé catholique de Louvain, Louvain-la-Neuve). 
Plants were maintained and multiplied in the tropical greenhouse 
(greenhouse no. 13; G2) using the PIF (Plants Issus de Fragments 
de tiges, Plants from Stem Fragments) technique (Kwa 2003, 2009, 
Meutchieye 2009, Sadom et al. 2010, Mbunzu et al. 2019). Plants 
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were irrigated daily, until they reached 40–60 days of age (4–6 leaf 
stage), for their use in all tests. In this study, all plantlets obtained 
directly by the PIF technique from infected banana stem showed 
severe symptoms of BBTV. Indeed, banana plants suckers from an 
infected strain are known to be systemically infected and show se-
vere symptoms of BBTV (Thomas and Iskra-Caruana 1999, van 
Regenmortel et al. 2000). This option was chosen because BBTV 
transmission by mechanical inoculation has never been successful 
(Thomas et al. 1994, Lepoivre 2003).

Before the rapid multiplication of banana plants, the plants were 
tested by PCR to determine the genotype (Supplementary Figure S1 
in Safari Murhububa et al. 2021) and health status (Supplementary 
Figure S2 in Safari Murhububa et al. 2021) of each of them. Total 
DNA was extracted from 40 g of young symptomatic and asymp-
tomatic banana leaves, using the CTAB extraction method applied 
to cotton leaves (Benbouza et al. 2006), and adapted to banana 
plants. Confirmation of the infected or uninfected state of banana 
plants was performed using the BBTV-specific primers DNA-R-
2drc Forward and DNA-R-2rdc Reverse, designed to amplify 1068 
bp products (Mukwa et al. 2016). Discrimination of banana strict 
Acuminata genome (AAA) and Musa x paradisiaca interspecific ba-
nana (AAB) was performed using the primer pair Musa-OLF/Musa-
OLR designed to target the junction between the banana genome 
and eBSV (expected band at about 522 bp) (Chabannes et al. 2013).

Effect of BBTV on Aphid Life-History Traits
Non-viruliferous adult females of P. nigronervosa were placed 
on healthy and infected banana plants, dessert, and plantains (4 
treatments), with one aphid per plant, to evaluate the effect of BBTV 
on their life-history traits (the survival rate, daily fecundity per 
aphid, longevity, maturation time of nymphs, and tibia length).

Each deposited adult female and the produced offspring were 
carefully removed from the plant 24 h later, using a fine brush, 
leaving only one nymph per plant (with 10 replicates per treatment, 
for a total of 40 plants used). Each remaining individual was then 
observed daily at the same time throughout its life. Thus, biological 
parameters such as daily fecundity and total fecundity per female 
aphid, aphid survival rate, average longevity (i.e., life span or age at 
death) (in days) of aphids, maturity time (age at first reproduction, 
development time) (in days) were determined. In addition, a survival 
and fecundity table was constructed, from which the net reproduc-
tion rate (Ro: corresponding to the total fecundity per surviving 
aphid in this work), intrinsic rate increase (r), regeneration time (T), 
and the doubling time (DT) were determined (Hance et al. 1994). 
In order to prevent aphids and/or nymphs from moving and hiding 
in other parts of the plant (e.g., spaces between the pseudostem 
sheaths), and to facilitate handling, aphids were placed at the base of 
the pseudostem, and a parafilm paper device, surrounded by sticky 
paper, was rolled up 20 cm from the neck of each banana plant; 
this approach was based on the fact that P. nigronervosa prefers to 
settle at the base of the banana plants, close to the ground, when 
aphid numbers are still low (Robson et al. 2006, Hooks et al. 2011). 
The whole set-up (banana plant–cage–aphids) was placed in an air-
conditioned room, at a temperature of 25 ± 2 °C, a relative humidity 
of 40 ± 5%, and an artificial photoperiod of 12/12h.

Mortality tables were completed with data collected according to 
Carey (1993) (as used for P. nigronervosa in Robson et al. 2007). The 
intrinsic rate of increase (r) was estimated by iteration, according to 
Carey (1993), using the equation:

r = ln (Ro) /T

where Ro is the Net reproduction rate, which is the average number 
of female offspring born from a cohort of females. In practice, the Ro 
value integrates both fecundity and survival of females. It is there-
fore close to the definition of fitness: the expectation of the number 
of viable, reproductive offspring (Haldane 1932, Hance et al. 1994, 
Ismail et al. 2014); T is the mean generation time or average age 
of reproduction (in days) (here, the time required for a newborn 
female is replaced by the net reproduction rate [Ro], i.e., from her 
laying to the end of her reproduction period); DT is the doubling 
time, which is the time required in days for the population to double 
(Carey 1993).

The following formulae were used in these calculations:

Ro =
∑

lxmx

where lxmx is net maternity (offspring produced per original indi-
vidual at each age).

T = ln(Ro)/r
DT = ln2/r

As the morphological parameters of aphids vary according to the 
experienced environmental conditions (Daly 1985, Williams and 
Dixon 2007), the length of the posterior tibia (mm) (representative 
for body size: Murdie 1969) was measured on adult aphids. Eighty 
adult aphids from 4 different types of banana plants (treatments), 
with 20 aphids (20 replicates) per treatment, were considered. The 
tibia size was measured using a stereomicroscope (LEICA MZ6) 
mounted on a camera.

Effect of BBTV on Aphid Population Growth
Individual non-viruliferous aphid nymphs (1 nymph per plant) of 
the fourth instar were placed on live banana plants (never exposed 
to aphids before, nor used in other experiments) of ≈50 cm height 
(4–6 leaves) of each genotype (plantain and dessert) and BBTV 
status (infected and healthy). For each of these 4 treatments, 30 
banana plants (giving a total of 120 plants) were placed in an air-
conditioned room, at a temperature of 25 ± 2 °C, a relative hu-
midity of 40 ± 5%, and an artificial photoperiod of 12:12h. The 
plants were watered as needed from below by pouring water into 
the tray. Ten plants from each treatment were randomly selected for 
a weekly aphid count for 3 wk, sampling without discount (exhaus-
tive sampling), in accordance with the method used by Robson et 
al. (2007), to quantify the population of aphids that developed on 
each of the 4 treatments.

Effect of BBTV on Winged Aphid Production
Twenty non-viruliferous apterous aphids, in the fourth instar, 
were placed on never-before-used live banana plants ≈50 cm tall 
(4–6 leaves), of each genotype (plantain and dessert) and BBTV 
status (infected and healthy). Four treatments—HDB, IDB, HPB, 
and IPB—were considered in this part of the work. For each treat-
ment, 10 banana plants (giving a total of 40 plants) were placed 
in an air-conditioned room, at a temperature of 25 ± 2 °C, a rela-
tive humidity of 40 ± 5%, and an artificial photoperiod of 12:12h. 
The plants were watered as needed from below by pouring water 
into the tray. In contrast to apterous aphids, we found that P. 
nigronervosa alates were not found in inaccessible parts of the ba-
nana plant (spaces between the pseudostem sheaths); therefore, the 
number of alates produced was simply counted weekly for 10 wk, 
to quantify the development of winged aphids reared on the 4 types 
of banana plant.
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Statistical Analyses
To analyze the differences in daily fecundity in aphids, we fitted a 
generalized mixed effect model (GLMM) with a Poisson family and 
a log-link function to the data, using the glmmTMB package in R 
(Magnusson et al. 2017). As fixed effect terms in the model, we used 
the treatment (4 levels) in interaction with the number of days after 
the start of analysis (quadratic covariate to account for increasing 
and decreasing fecundity slopes).

The identity of each individual aphid was used as a random 
effect term in the model to account for repeated measurements 
(nonindependence of data). The same type of model was used to 
analyze cumulated population growth, as well as winged aphid pro-
duction, using the interaction between the week and the treatment 
terms as fixed effects. We fitted a Cox survival model to the data 
to analyze aphid longevity (survival probability) on each treatment. 
The differences in posterior tibia length and in the total number of 
aphids among each treatment were analyzed using generalized linear 
models fitted with a Gaussian and a Poisson family, respectively. 
Contrasts between levels of a significant variable (P < 0.05) were 
analyzed using the emmeans package (Lenth et al. 2018). Statistical 
analyses were all done on R v4.0 (R Core Team 2022).

Results

Effect of BBTV on Aphid Development
Daily fecundity per female varied with treatment (χ2 = 21.3, df = 3, P 
< 0.001; Fig. 1) and with time (days) (χ2 = 654.6, df = 1, P < 0.001; 
Fig. 1). Fecundity was higher for aphids reared on IPB than on the 
other banana types (HDB, IDB, and HPB) and lower for aphids 
reared on HDB than on the other banana types (IDB, HPB and IPB) 
(Fig. 1). The dynamics were broadly the same between treatments, 
except that a rapid drop of fecundity was found for IDB after the 
peak fecundity date. There was an interaction effect between day 
and treatment (χ2 = 9.5, df = 3, P < 0.05; Fig. 1), as for each of the 
4 treatments, the daily fecundity per female was different depending 
on the time of larviposition. The 4 curves had different shapes re-
garding their amplitude (Fig. 1).

Aphid survival was lower on IDB than on all other treatments 
(HDB, HPB, and IPB) (Cox: coef = 2.03, z = 3.61, P < 0.001; Fig. 
1), between which survival rates were similar (Cox: coef = 2.03, z = 
0.83, P = 0.40; z = 1.49, P = 0.13; Fig. 1).

The longevity of aphids reared on dessert banana plant decreased 
with virus infection (Tukey contrasts, z = 4.65, P < 0.001) (Fig. 2B), 
while that of aphids reared on plantain plant did not change with 
virus infection (Tukey contrasts: z = 1.29, P = 0.56) (Fig. 2B). Aphid 
longevity also did not vary with plant genotype (Tukey contrasts: z = 
−2.25, P = 0.10; z = 1.10, P = 0.68) (Fig. 2A).

Furthermore, the time to maturity did not vary with viral infec-
tion (Tukey contrasts: z = −0.281, P = 0.99; z = 0.44, P = 0.97), or 
with genotype (Tukey contrasts, z = −0.21, P = 0.99; z = −0.93, P = 
0.78) (Fig. 2B).

The infection status of banana plant made a difference regarding 
the length of the hind tibia (Tukey contrasts: z = 5.83, P < 0.001; 
P = 5.36, P < 0.001) (Fig. 2C), but not the plant genotype (Tukey 
contrasts: z = −1.42, P = 0.48; z = −0.95, P = 0.77) (Fig. 2C). For both 
genotypes, aphids reared on healthy banana plants (non-viruliferous 
aphids) had longer hind tibiae than aphids reared on infected banana 
plants (viruliferous aphids) (Fig. 2C).

Furthermore, the intrinsic growth rate (r), in contrast to the 
regeneration time (T) and slightly to the doubling time (DT), was 
higher in infected banana plants compared with healthy banana 

plants, while the net reproduction rate (Ro) was higher in IPB and 
lower in IDB (Table 1).

Effect of BBTV on Aphid Reproduction
The increase in the number of P. nigronervosa on banana plants 
varied according to the treatment (χ2 = 434.84, df = 3, P < 0.001; 
Fig. 3) and observation time (1 wk intervals) (χ2 = 4,512.17, df = 1, 
P < 0.001; Fig. 3). There was an interaction effect between time (in 
weeks) and treatment (χ2 = 37.00, df = 3, P < 0.001; Fig. 3), for all 
4 treatments, the aphid population growth was different over the 
course of the experiments (at 1 wk intervals) (Fig. 3).

The aphid population increased more rapidly on plantain banana 
plant than on dessert banana plant, regardless of infection status 

Fig. 1. Daily fecundity and survival rate of aphids on healthy and infected, 
dessert, and plantain banana plants (n = 10). Survival rate (lx): line without 
markers, and fecundity (mx): line with markers.
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(Fig. 3). Aphis populations increased more rapidly with virus in-
fection only on plantain banana plants, while population growth 
curves were similar between virus infection on HDB and IDB. After 
3 wk, aphid populations reached an average maximum of 89.64 ± 
78, 94.17 ± 13.4, 155.9 ± 17.63, and 261.5 ± 24.57 individuals per 
plant for HDB, IDB, HPB, and IPB, respectively.

Effect of BBTV on Alate Production
The production of P. nigronervosa alates on banana plants varied 
by banana type (χ2 = 1,198.04, Df = 3, P < 0.001; Fig. 4) and over 
time (weeks) (χ2 = 4113.05, df = 1, P < 0.001; Fig. 4). Alate pro-
duction occurred earlier on IPB, then on HPB, followed by HDB, 
and was slowest on IDB. Alates were thus produced more rapidly 
on plantain than on dessert banana, regardless of infection status. 
Their number increased more rapidly with virus infection only on 
plantain, while it decreased with virus infection on dessert banana. 
There was an interaction effect between time (in weeks) and treat-
ment (χ2 = 139.77, df = 3, P < 0.001; Fig. 4), as for all 4 treatments, 
winged aphid production was different depending on the time of 
observation (each time at the interval of one week) and the curves 
had different shapes (Fig. 4).

Discussion

In our study, we evaluated the effect of BBTV on life-history traits, 
population dynamics, and alate production rate of P. nigronervosa 
reared on infected and healthy, plantain, and dessert banana plants. 
Daily fecundity per female varied with both virus infection and gen-
otype, with stronger dynamics for infected plantain banana plant 
than for other banana types (healthy dessert banana, infected dessert 
banana, and healthy plantain banana plants), and lower for healthy 
dessert banana plant than for other banana types (infected dessert 
banana, healthy plantain banana, and infected plantain banana 
plants). Dessert banana plants are very susceptible to many diseases 
due to their narrow genetic base (Abadie et al. 2003, Ngatat et al. 
2022). This is consistent with previous studies where aphids reared 
on infected plants produced higher numbers of nymphs than aphids 
reared on healthy plants (Colvin et al. 2006, Bosque-Pérez and 
Eigenbrode 2011, Eigenbrode et al. 2018). In addition, total aphid 
fecundity, in terms of net reproductive rate (Ro), differed by geno-
type and virus infection. Aphids reared on infected plantain banana 
plant had higher total fecundity, whereas on infected dessert banana 
plant had lower total fecundity. This is because aphid survival and 
longevity were lower on the infected dessert banana plant than on 
the other banana types (healthy dessert banana, healthy plantain 
banana, and infected plantain banana plants), where survival rates 
were similar.

Furthermore, the higher fecundity per aphid age, as well as 
the higher total fecundity per female (Ro), on plantain compared 
with dessert banana (irrespective of infection status) is thought to 
be due to the difference in internal resource composition between 
Cavendish (strict triploid—AAA) and Pacific plantain (triploid hy-
brid—AAB) genotypes, in particular to the ratio of carbohydrates 
to amino acids in the phloem (Simmonds 1962, Mauck et al. 
2014). This is consistent with the recent study of Ngatat et al. 
(2022), who evaluated 44 Musa germplasm plants of different ge-
netic compositions A and B for their performance against banana 

Fig. 2. Effect of BBTV on the development of Pentalonia nigronervosa reared on dessert and plantain banana plants. A) Longevity (n = 10); B) time to maturity (n 
= 10); and C) length of posterior tibia of adults (n = 20). Statistical results (GLM): NS indicate nonsignificant results (P > 0.05), stars indicate significant differences 
(P < 0.05) between infection status (for each genotype), and different letters indicate significant differences (P < 0.05) between genotypes (for each infection 
status).

Table 1. Effect of BBTV on survival and fecundity table indices of 
Pentalonia nigronervosa reared on dessert and plantain banana 
plants

Treatment

Net reproductive Intrinsic rate Generation Doubling

Rate (Ro) Increase (r) Time (T) Time (DT)

HDB 34.8 0.0949 37.4 7.303
IDB 20.2 0.138 21.7 5.022
HPB 41.85 0.0972 38.4 7.131
IPB 52.7 0.125 31.7 5.545
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aphids. In general, dessert banana plants had the lowest aphid 
density per plant compared with plantain banana plants. However, 
the authors did not take into account the effect of virus on aphid 
performance.

The results of our study are consistent with those of Chakraborty 
et al. (2021) in which, on Cavendish dessert banana plants, aphids 
reared on infected banana plants had a shorter life span than aphids 
reared on uninfected banana plants. This highlights the negative ef-
fect of BBTV on the longevity and survival rate of P. nigronervosa 
on dessert banana plants, while the effect of BBTV appears to be 
neutral on the longevity of aphids reared on plantain banana plants. 
It is therefore conceivable that P. nigronervosa increases its daily 
fecundity to compensate for the decrease in longevity due to virus 
infection, particularly in susceptible genotypes such as Cavendish. 
Thus, there would be a trade-off between fecundity and longevity 
(and survival rate) in P. nigronervosa induced by viral infection, 

as also observed in females of the Mexican Bean Weevil Zabrotes 
subfasciatus Boheman (Chrysomelidae: Bruchinae) and induced by 
azadirachtin (Vilca Mallqui et al. 2014), as well as in Mediterranean 
Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) after heat 
stress (Zhi-Chuang et al. 2014).

In this work, virus infection had a positive effect on aphid 
population increase and alate production only on plantain, while 
it had no effect on population increase on dessert banana, and 
had a negative effect on alate production on the latter (dessert 
banana). This is because, as mentioned above for total fecun-
dity per aphid (Ro), the high daily fecundity of dessert banana 
is counterbalanced by the very low longevity and survival rate of 
aphids on dessert banana plant. Thus, it appears that virus infec-
tion promotes aphid outbreaks on plantain, while this effect is 
neutral on dessert banana. Also in this work, the increase in aphids 
on plantain (infected and uninfected) was greater than that for 
aphids on dessert banana (infected and uninfected). This is again, 
as for fecundity and alate production, due to the phenotypic de-
marcation between the 2 genotypes. Indeed, it was observed that 
aphids seem to be attracted to, and multiply rapidly on genotypes 
resistant to the pathogens they transmit (Chesnais et al. 2019, 
Safari Murhububa et al. 2021). The increase in aphid population 
on banana plants and the production of viruliferous and non-
viruliferous alates are consistent with each other simply because 
the appearance of the alates usually occurs when the aphid pop-
ulation density has increased significantly or when the quality of 
the banana host plant has decreased significantly (Braendle et al. 
2006, Williams and Dixon 2007).

Pentalonia nigronervosa established and multiplied more rapidly 
on plantain plants, which are a wilder genotype (Simmonds 1962) 
and therefore less susceptible to BBTV, compared with Cavendish 
dessert bananas (severely damaged by BBTV), highly domesticated 
and known to be highly susceptible to BBTV (Su et al. 1992, Hooks 
et al. 2008, 2009, Ngatat et al. 2022). We therefore suggest that 
BBTV infection excessively deteriorates the dessert banana, to the 
extent that it is of poor quality for P. nigronervosa in terms of sur-
vival rate and longevity of the aphids that colonize it. As a result, 
the aphid population develops more slowly in this banana genotype. 
On the other hand, the more rapid multiplication of P. nigronervosa 
on plantain banana than on dessert banana plant, and the apparent 
BBTV tolerance of plantain banana plant, contributes to the sur-
vival of BBTV. Thus, plantain banana plant (more than dessert ba-
nana plant) would constitute a potential reservoir of BBTV and P. 
nigronervosa in agrosystems.

In this work, the virus infection reduced the length of the hind 
tibiae of aphids reared on both genotypes, while it increased their 
daily fecundity. Usually, tibia length and body size are positively 
correlated with fitness. However, our study shows that BBTV in-
fection has a negative impact on aphid growth. Virus infection 
in banana plants thus leads to a trade-off between fecundity and 
body size in P. nigronervosa. Under specific conditions, such as 
pathogenic stress, such trade-off may appear. Indeed, during a 
viral infection, the aphid mobilizes its energy reserves (lipids, fats, 
and carbohydrates) toward reproduction. A number of studies 
have reported instances of trade-offs between fecundity and other 
traits in insects (Zhang et al. 2009, Khuhro et al. 2014). This is 
the case, for example, in the study of Ren et al. (2015), in which 
My. persicae aphids reared on tobacco plants infected with po-
tato virus Y (PVY) were smaller, in terms of body and cornicle 
length, body and head width, and distance between compound 
eyes, with increased fecundity, than those reared on uninfected 
plants. Similarly, a study by Wosula et al. (2013) reported that 

Fig. 3. Pullulation of Pentalonia nigronervosa on dessert and plantain banana 
plants, infected and uninfected (n = 10). Shaded areas around each predicted 
value represent 95% CI. Different letters indicate significant differences 
among treatments for a given week (P < 0.05).

Fig. 4. Winged aphid production on infected and uninfected dessert banana 
and plantain (n = 10). Averages were observed on 10 replicates. HDB (green); 
HPB (blue); IDB (red); IPB (purple).
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My. persicae reproduction increased when fed virus-infected sweet 
potato plants compared with healthy plants. Despite the negative 
effect of BBTV on aphid tibia length, the increased reproduction 
of P. nigronervosa increases the probability of virus acquisition 
and transmission.

The results of this work, as well as those of Safari Murhububa 
et al. (2021), tend to reinforce the “vector manipulation hypoth-
esis” developed to explain the relationship between insect vectors 
and the plant viruses they transmit (Mayer et al. 2002, Ingwell et al. 
2012, Roosien et al. 2013). This hypothesis, here applied to aphids, 
predicts that a virus will promote its spread from plant to plant by 
influencing the selection behavior of the host plant by the vector 
(Mayer et al. 2002, Ingwell et al. 2012) and by enhancing the repro-
ductive performance of the vector to the point of early alate produc-
tion (Johnson and Birks 1960, Gildow 1980, Blua and Perring 1992), 
thereby promoting the epidemiology of the virus. In fact, the pattern 
of plant-vector-virus interaction seems indeed to be favorable to the 
transmission mechanism of persistent viruses (such as BBTV) (Iskra-
Caruana 2003, Eigenbrode et al. 2018), requiring sustained feeding 
in the phloem of an infected plant (Sylvester 1980, Montllor and 
Gildow 1986, Garret et al. 1996, Eigenbrode et al. 2018). Regardless 
of the mode of transmission, plants infected with plant viruses tend 
to release VOC that are more attractive to the vectors (Shi et al. 
2021). The difference lies in the regulation of plant defense systems. 
In nonpersistent mode, virus infections significantly induce plant 
defense responses, which probably induces vectors to disperse and 
transmit viruses in a short period of time. In (semi-) persistent mode, 
virus infections reduce (or suppress) plant defense responses and ma-
nipulate plant traits to become feeding sites, leading to an increase 
in the vector population and facilitating virus transmission during 
vector epidemics (Shi et al. 2021).

The use of a single P. nigronervosa clone in this experiment limits 
generalizability. However, intraclonal phenotypic variability is wide-
spread in aphids (Loxdale 2008) and could be due to several factors, 
including the presence of Wolbachia bacteria (Manzano-Marín 
2020). This variability appeared well in our results and in other 
studies in which authors also used a single clone for their compar-
ison (Robson et al. 2007, Safari Murhububa et al. 2021). In addition, 
the use of a single clone allowed the results to be contrasted enough 
to support our hypothesis so using a single clone, as classically done 
in aphid studies, does not appear to be a disadvantage, although fu-
ture studies may need to look at inter-clonal and inter-populational 
variability in aphid response to different banana genotypes and virus 
infection.

Our study shows that BBTV infection in banana plants improves 
life-history trait values and population increase of P. nigronervosa, 
through improved reproductive capacity, despite the decrease in size 
of aphids reared on infected banana plants. However, as the plant 
host–vector–virus interaction involves a fourth partner, which are 
bacterial symbionts hosted in the vector body (Gray et al. 2014, 
Pinheiro et al. 2015), an assessment of the level of involvement of 
P. nigronervosa-associated endosymbionts in BBTV transmission is 
needed in future research.
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